	(Pages: 2)		10639
Reg. No. :		3 8 12	
Name :	******		

Fourth Semester B.Tech. Degree Examination, March 2016 (2013 Scheme)

13.402 : DIGITAL ELECTRONICS AND LOGIC DESIGN (E)

Time: 3 Hours Max. Marks: 100

PART-A

Answer all questions:

(10×2=20 Marks)

- 1. State and explain De-Morgan's theorem.
- 2. Write short notes on excess-3 code.
- 3. i) Convert (1101001.101010)₂ to octal.
 - ii) Convert (4BAC)₁₆ to binary.
- 4. Design a half adder using NAND gates.
- 5. Distinguish between CMOS and TTL families.
- 6. How will you convert R S flip-flop into J K flip-flop?
- 7. Draw the circuit diagram of a 4 bit PIPO shift register.
- 8. Differentiate between combinational and sequential circuit.
- 9. Write notes on PAL and PLA.
- 10. Explain state diagrams.

PART-B

Answer any one	question from	each Module
----------------	---------------	-------------

Module - I

11.	a)	Simplify $Y = \sum (0, 2, 4, 8, 10, 12, 13, 14, 15)$ using Karnaugh map and implement the circuit using minimum number of gates. Also write its equivalent POS form.	10
		Prove that $AB + \overline{A}C + BC = AB + AC$. Reduce the expression $(B + BC)(B + \overline{B}C)(B + D)$. OR	5
12.	a)	Simplify the expression using Quine MC Clusky method.	
	b)	Σ m = (0, 1, 6, 7, 8, 9, 13, 14, 15). Realize all the basic gates using NAND and NOR gates. Write the logic expressions and truth tables.	10
		Module – II	
13.		Design and implement a full adder circuit using gates. Explain the operation of a two input TTL NAND gate.	10 10
		QR	
14.	b)	Write notes on multiplexers and demultiplexers. Explain encoder and decoder. With a neat diagram explain the operation of a BCD adder.	5 5 10
		Module – III	
15.		Draw the circuit diagram of a 4 bit ring counter. Explain its working with timing diagram. Design a mod 5 synchronous up counter using JK flip flop. OR	10 10
16.		Design a serial-in parallel-out shift register. Explain 4 bit Johnson counter with waveforms.	10 10
		Module – IV	
17.	a)	Draw the circuit of an astable multivibrator using discrete gates. Explain its working.	13
	b)	What is the difference between static and dynamic RAM. OR	7
18.		Draw the circuit of a static bipolar RAM cell and explain its operation. Explain the working of monostable multivibrator using 555 timer.	10 10